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ON CONSTRUCTION OF OPTIMAL MIXED-LEVEL
SUPERSATURATED DESIGNS

By Fasheng Sun1, Dennis K. J. Lin and Min-Qian Liu1

Northeast Normal University, Pennsylvania State University
and Nankai University

Supersaturated design (SSD) has received much recent interest because
of its potential in factor screening experiments. In this paper, we provide
equivalent conditions for two columns to be fully aliased and consequently
propose methods for constructing ?(/nod)- and x2-?ptimal mixed-level
SSDs without fully aliased columns, via equidistant designs and difference
matrices. The methods can be easily performed and many new optimal
mixed-level SSDs have been obtained. Furthermore, it is proved that the

nonorthogonality between columns of the resulting design is well controlled
by the source designs. a rather complete list of newly generated optimal
mixed-level SSDs are tabulated for practical use.

1. Introduction. The supersaturated design (SSD) is a factorial design in
which the number of runs is not sufficient to estimate all the main effects. Such de?

signs are useful when the experiment is expensive, the number of factors is large,

and only a few significant factors need to be identified in a relatively small number

of experimental runs. Booth and Cox (1962) first examined these designs system?
atically and proposed the E(s2) criterion. However, such designs were not further
studied until the appearance of the work by Lin (1993, 1995), Wu (1993), Tang and

Wu (1997) and Cheng and Tang (2001). Research on mixed-level SSDs includes
the early work by Fang, Lin and Liu (2000, 2003) who proposed the ?(/nod)
criterion and the FSOA method for constructing mixed-level SSDs, and work by
Yamada and Matsui (2002) and Yamada and Lin (2002) who used y} to evaluate
mixed-level SSDs. Recent work on mixed-level SSDs includes Xu (2003), Fang
et al. (2004a), Li, Liu and Zhang (2004), Xu and Wu (2005), Koukouvinos and

Mantas (2005), Liu, Fang and Hickernell (2006), Yamada et al. (2006), Ai, Fang
and He (2007), Tang et al. (2007), Chen and Liu (2008a, 2008b), Liu and Lin
(2009), Liu and Cai (2009) and Liu and Zhang (2009).

This paper proposes some methods for constructing ?"(/nod)- and x2-optimal
mixed-level SSDs without fully aliased columns, and with a control on the

Received July 2010; revised December 2010.

Supported by NNSF of China Grant 10971107 and Program for New Century Excellent Talents
in University (NCET-07-0454) of China.

MSC2010 subject classifications. Primary 62K15; secondary 62K05.

Key words and phrases. Coincidence number, difference matrix, equidistant design, induced ma?
trix, orthogonal array.

1310

This content downloaded from 219.217.38.219 on Mon, 20 Nov 2023 02:57:20 +00:00
All use subject to https://about.jstor.org/terms



CONSTRUCTION OF MIXED-LEVEL SUPERSATURATED DESIGNS 1311

nonorthogonality. A large number of optimal designs is obtained. The remain?
der of this paper is organized as follows. Section 2 provides relevant notation and
definitions. In Section 3, we propose the general construction methods for mixed

level SSDs along with illustrative examples. Discussions on the nonorthogonality
of the resulting designs are given in Section 4. In Section 5, a review of the exist?
ing methods for mixed-level SSDs and comparisons with the current methods are

made, and some concluding remarks are provided. For coherence of presentation,
all proofs are placed in Appendix A and newly constructed designs are tabulated
in Appendix B.

2. Preliminaries, A mixed-level design that has n runs and m factors with

q\,..., qm levels, respectively, is denoted by F(n, q\ ? ? -qm). When YlJ^iQj ~
1) = n ? 1, the design is called a saturated design, and when YlJ^iQj ? 1) >
n ? 1, the design is called a supersaturated design (SSD). An F(n, q\ ? ? ? qm) can
be expressed as an n x m matrix F ? (fij). When some qj 's are equal, we use the
notation F(n,qx ? ? ? q{1) indicating r; factors having qi levels, / = 1,...,/. If all
the qj's are equal, the design is said to be symmetrical and denoted by F(n, qm).
Let ft be the /th row of an F(n, q\ ? ? ? qm) and fi be the y'th column which takes

values from a set of qj symbols {0,..., qj ? 1}. If each column /7 is balanced, that
is, it contains the qj symbols equally often, then we say F is a balanced design.
Throughout this paper, we only consider balanced designs. Two columns are called
fully aliased if one column can be obtained from the other by permuting levels; and
called orthogonal if all possible level-combinations for these two columns appear
equal number of times. An F(n, q\ ? ? ? qm) is called an orthogonal array of strength
two, denoted by Ln(qm) for the symmetrical case, if all pairs of columns of this
design are orthogonal.

The set of residues modulo a prime number p, {0, 1,? 1}, forms a field of
p elements under addition and multiplication modulo /?, which is called a Galois
field and denoted by GF(p). Note that the order of a Galois field must be a prime
power. A Galois field of order q = pu for any prime p and any positive integer u
can be obtained as follows. Let g(x) = bo + b\x + ? ? ? + buxu be an irreducible
polynomial of degree w, where bj e GF(p) and bu = 1. Then the set of all poly?
nomials of degree u ? 1 or lower, {ao + a\x H-h au-\xu~l\aj e GF(p)}, is a
Galois field GF(q) of order q ? pu under addition and multiplication of polyno?
mials modulo g(x). For any polynomial f(x) with coefficients from GF(p), there
exist unique polynomials q(x) and r(x) such that f(x) = q(x)g(x) + r(x), where
the degree of r(x) is lower than u. This r(x) is the residue of f(x) modulo g(x),
which is usually written as f(x) ? r(x)(modg(x)).

A difference matrix, denoted by D(rq,c,q), is an rq x c array with entries
from a finite Abelian group {A, +) with q elements such that each element of A
appears equally often in the vector of difference between any two columns of the

array [Bose and Bush (1952)]. Note that if A is an Lrq(qc), then it is also a differ?
ence matrix. A difference matrix D(rq, c, q) with c > 1 is said to be normalized,
denoted by ND(r#, c, q), if its first column consists of all zeros. In fact, for any
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1312 f. sun, d. k. j. lin and m.-q. liu

difference matrix D, if we subtract the first column from any column, then we can
obtain a normalized difference matrix.

For a scalar a and a matrix A, let a + A denote the element-wise sum of a

and A. For any two matrices A = (aij) of order r x s and B of order u x v, their
Kronecker sum and Kronecker product are defined to be

(au + B a\s + B\ (a\\B ??? a\sB\
. and A ? ? = . ,

ari+? ... ars + B/ \ar\B ??? ars?/
respectively. Here, we use "+^4" and "?^4" to denote the sum and Kronecker sum
defined on A, respectively.

For a design F = (fij)nxm, letm m
where <5-^ = 1 if fk ? fjk, and 0 otherwise. Then and o)ij(F) are called
the coincidence number and natural weighted coincidence number between rows
fi and fj, respectively. A design with equal coincidence numbers between differ?
ent rows is called an equidistant design. From Mukerjee and Wu (1995), a saturated

Ln(qm) is an equidistant design with
m ? 1

(1) ^ij(F) ?- and (Oij(F) = m ? 1 for / ^ /.q
The 2? (./nod) criterion proposed by Fang, Lin and Liu (2000, 2003) is defined

to minimize

?(/nob)= , 2 ^ ? /nod(A/7"),
where

nab(f\fj) is the number of (a,Z?)-pairs in (f\fi), and n/(qiqj) stands for
the average frequency of level-combinations in (fl,fi). Here, the subscript
"NOD" stands for nonorthogonality of the design. The /nod(/S Z7 ) value gives
a nonorthogonality measure for (fl, fj), and columns and /7 are orthogonal
if and only if /nod(/* , f*) = 0. It is obvious that F is an orthogonal array if and
only if ?(/nod) = 0, that is, /nodC/1 , fj) = 0 for all i, j = 1,..., m, / 7^ j. Thus
^(/nod) measures the average nonorthogonality among the columns of F.

Another criterion that is to be minimized was defined by Yamada and Lin (1999)

and Yamada and Matsui (2002) as X2(F) = Ei<i<j<m WjfooDif* fj)/"- Ob?
viously, ?(/nod) and x2(F) are equivalent in the symmetrical case. Here, we
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CONSTRUCTION of MIXED-LEVEL SUPERSATURATED DESIGNS 1313

adopt both ?"(/nod) and x2(F) to evaluate the newly constructed SSDs. There
are also some other criteria for assessing mixed-level SSDs [see, e.g., Liu and Lin
(2009) for a general review].

The following results, regarding the 2? (/nod) and x2(F) optimality criteria of
a design, will be needed for our construction methods.

LEMMA 1. (a) [Fang et al. (2004a)]. If the difference among all coincidence
numbers between different rows of design F does not exceed one, then F is
?(/nod)-optimal.

(b) [Li, Liu and Zhang (2004); Liu, Fang and Hickernell (2006)]. If the natural
weighted coincidence numbers between different rows of design F take at most
two nearest values, then F is x?-optimal.

3. Proposed construction methods. In this section, we first provide some
equivalent conditions for two columns to be fully aliased, then propose methods
for constructing ?"(/nod)- and x2-optimal SSDs, and finally study the properties
of the resulting designs.

3.1. Equivalent conditions for two columns to be fully aliased. An ?"(/nod)
or x2-optimal SSD may contain fully aliased columns, which is undesirable. Let

matrix Xj = (xJst) of order n x qj be the induced matrix [Fang et al. (2004a)] of

the y'th column of an F(n, q\- - qm), that is, xJst = 1 if the 5th element in the jth

column is t ? 1, otherwise 0, for s = 1,..., n, t = 1,..., qj and j = 1,..., m. The
following theorem presents theoretical results concerning the column aliasing that
will be used in the construction methods.

THEOREM 1. Suppose Xj ? (xJst) is the induced matrix of a balanced column
fj = (fij,..., fnjJY with qj levels, j = 1,..., 4, and n\ = n3, n2 = n4.

(a) For qi=q2=q3=q4 = q and A = {0,..., q - 1}:

(i) fl and /3 are fully aliased if and only ifX\X[ = X3X3;

(ii) the induced matrix of f1 ?a f2 is [{X2Pfn)f,(X2PfnilYY =
(X\ ? X2)P, where P = (Pq, ..., Pq_iY and Pi is a permutation matrix de

i+A(0,...,q-l) = (0,...,q-l)P;, i=0,...,q-V,
(iii) if fl f2 and f3 ?^4 f4 are fully aliased, then fl is fully aliased

fined by
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1314 f. sun, d. k. j. lin and m.-q. liu

(ii) columns q2(fl - ^) ? (f2 - ^) + and q4(f3 - ^) ?
^y?4 _ 24zl) _|_ ^3^4 -1 are fully aliased if and only if fl is fully aliased with

/3 and f2 is fully aliased with f4;

(iii) for q3 = q4 = q, qiif1 - ^ ? (f2 - ^) + and f ?A f4
are not fully aliased in any case.

3.2. Construction of optimal symmetrical SSDs. We next present the methods
for constructing ?(/nod)- and x2-optimal SSDs without fully aliased columns.

theorem 2. Let D be an ND(rq, c, q) defined on an Abelian group A =
{0, ...,q ? 1} without identical rows, F be an F(n,qm) without fully aliased
columns and with constant coincidence numbers, say X, between its different rows,
then:

(a) F ?j\ Df is an F(cn, qrqm) with two different values of coincidence num?
bers, mr and Xrq\

(b) F ?^ D' has no fully aliased columns.

From Lemma 1, if \mr ? Xrq\ < 1, then F ?^ Df is both ?(/nod)- and y}
optimal. The following corollary can be directly obtained from Lemma 1, Theo?
rem 2, and equation (1).

corollary 1. Let F be a saturated Ln(qm) and D be an ND(g, c, q) with?
out identical rows. Then F ?^ D' is an F(cn, qmq) without fully aliased columns
and with two different values of coincidence numbers, m and m ? I, and thus is
both ?(/nod)- and x2-optimal.

From Hedayat, Slone and Stufken (1999), there exist an Ln(qm) with n = qt
and m = (n ? l)/(q ? 1) and an ND(g, q, q) without identical rows for any prime

power q, thus optimal F(cqt, q^qt+ designs with coincidence numbers
(q* ? l)/(q ? 1) ? 1 or (ql ? l)/(q ? 1) can be constructed from Corollary 1,

where c is a positive integer and c < q.

Example 1. Let F be an L9(34) and D be an ND(3,2, 3) (cf. Table 1), then
F ?A F>f is an F(18, 312) with coincidence numbers 4 and 3 as listed in Table 2,
where A = GF(3). This new design is an ?(/nod)- and x2-optimal SSD without
fully aliased columns.

3.3. Construction of optimal SSDs with two different level sizes. Based on
Lemma 1 and Theorem 2, the following theorem can be obtained.

theorem 3. Let Fi be an F(ni,q^1) with constant coincidence numbers
Xi, and no full aliased columns, i = 1,2. Let D be an ND(rq\, n2, q\) de?
fined on Abelian group A\ = {0,..., q\ ? 1} without identical rows. Then F =
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construction of mixed-level supersaturated designs 1315

Table 1
F and D in Example 1

F' D
000111222 00
0 1 2 0 1 2 0 1 2 0 1012120201 02
0 2 1 1 0 2 2 1 0

(F\ (Bai D\Qni ? F2) is an F{n\n2, q\mxqxq22) without full aliased columns.
Furthermore:

(a) if\(X2 + rm\) ? (m2 + X\rq\)\ < 1, then F is E(fyioD)-optimal;
(b) ifq2k2 + q\rm\ = q2m2 + X\rq2, then F is y}-optimal.

Next, let us consider two illustrative examples for Theorem 3.

Example 2. Let F\ be an L4(23), F2 be the E(/nod)-optimal F(6, 35) ob?
tained by Fang, Ge and Liu (2004) and D be an ND(8, 6, 2) without identical
rows obtained from an Ls(27) based on A = GF(2). Then X\ = X2 = \,q\ ?
2, q2 = 3, r = 4, m\ = 3 and m2 = 5 which satisfy the condition that X2 + rm\ =
m2 + \\rqx = 13, thus (F\ ?a D'9 04 ? F2) is an E(/nod)-optimal F(24, 22435)

Table 2
The F(18, 312) constructed in Example 1

F@a d'
0000000000000120120120120001111112220121201202010002222221110122012011201110001111111200121201201111112220001201202010121 1 1222000222120201012201222000222222201012201201222111000111201120012120222222111000201201120012
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1316 f. sun, d. k. j. lin and m.-q. liu

Table 3
Fi, F2 and D in Example 2

Fx F2 Df
000 00000 00000000011 01111 00111100101 10221 01011010110 12012 0101010121202 0011001122120 01100110

with constant coincidence numbers 13. The source designs and resulting design
are listed in Tables 3 and 4, respectively.

Example 3. Let F\ be an L4(23), F2 be the F(6, 310) obtained by Georgiou
and Koukouvinos (2006) and D be an ND(24, 6, 2) without identical rows ob

Table 4
The F(24, 22435) constructed in Example 2

Fl?^Z)' 04? F2

0 0
0 0
0 1
0 1
0 0
0 1
0 0
0 0
0 1
0 1
0 0
0 1
1 1
1 1
1 0
1 0
1 1
1 0
1 1
1 1
1 0
1 0
1 1
1 0

0 0 0
1 1 1
0 1 1
0 1 0
1 1 0
1 0 0
0 0 0
1 1 1
0 1 1
0 1 0
1 1 0
1 0 0
1 1 1
0 0 0
1 0 0
1 0 1
0 0 1
0 1 1
1 1 1
0 0 0
1 0 0
1 0 1
0 0 1
0 1 1

0 0 0
1 0 0
0 1 0
1 0 1
0 1 1
1 1 0
0 0 0
1 0 0
0 1 0
1 0 1
0 1 1
1 1 0
1 1 1
0 1 1
1 0 1
0 1 0
1 0 0
0 0 1
1 1 1
0 1 1
1 0 1
0 1 0
1 0 0
0 0 1

0 0
0 0
0 1
0 1
0 0
0 1
1 1
1 1
1 0
1 0
1 1
1 0
0 0
0 0
0 1
0 1
0 0
0 1
1 1
1 1
1 0
1 0
1 1
1 0

0 0
1 1
0 1
0 1
1 1
1 0
1 1
0 0
1 0
1 0
0 0
0 1
0 0
1 1
0 1
0 1
1 1
1 0
1 1
0 0
1 0
1 0
0 0
0 1

0 0 0
1 1 0
1 0 1
0 1 0
0 0 1
0 1 1
1 1 1
0 0 1
0 1 0
1 0 1
1 1 0
1 0 0
0 0 0
1 1 0
1 0 1
0 1 0
0 0 1
0 1 1
1 1 1
0 0 1
0 1 0
1 0 1
1 1 0
1 0 0

0 0
0 0
0 0
1 0
1 0
0 0
1 1
1 1
1 1
0 1
0 1
1 1
0 1
0 1
0 1
1 1
1 1
0 1
1 0
1 0
1 0
0 0
0 0
1 0

0 0
0 1
1 0
1 0
0 1
1 1
1 1
1 0
0 1
0 1
1 0
0 0
1 1
1 0
0 1
0 1
1 0
0 0
0 0
0 1
1 0
1 0
0 1
1 1

0 0 0
1 1 1
1 1 0
1 0 1
1 0 0
0 0 1
1 1 1
0 0 0
0 0 1
0 1
0 1
1 1
1 1
0 0 0
0 0 1
0 1 0
0 1 1
1 1 0
0 0 0
1 1 1
1 1 0
1 0 1
1 0 0
0 0 1

0 0
0 0
1 0
0 1
1 1
1 0
1 1
1 1
0 1
1 0
0 0
0 1
1 1
1 1
0 1
1 0
0 0
0 1
0 0
0 0
1 0
0 1
1 1
1 0

0 0 0 0 0
1 1

0 0 0

0 0 0
1

0
2
1

2
0 0 0
0 1 1
1 0
1 2
2 1
2 2

0 0
1 1

0 0
1 1

0 0
1 1
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construction of mixed-level supersaturated designs 1317

tained from an L24(223) based on A ? GF(2). Then X\ ? 1, X2 ? 2, q\ ? 2,q2 ?
3, r = 12, m\ ? 3 and ra2 = 10 which satisfy the condition that q2X2 + q\rm\ =

g2ra2 + A.ir<^ = 78, thus (Fi ?^ D', 04 ? F2) is a x2(?>)-optimal F(24, 272310)
with constant natural weighted coincidence numbers 78. Exact details are omitted
here but available upon request.

3.4. Construction of optimal SSDs with three different level sizes. The next
lemma is useful in the upcoming proposed construction method.

Lemma 2. Let V = {-^, ..., ^} = {0,..., q - 1} - *=i
and Vi = (i - E^-)q + V, i = 0,..., p - 1, then V( fl V) = O /or i ^ j arcd

Ufi Vi = {-^i, .= {0.- 1} - W?^?
0 is an empty set.

From this lemma, we can obtain the following theorem in a straightforward
manner.

THEOREM 4. Let Fi be an F(ni, q?1) with constant coincidence numbers X\,

1 = 1, 2, then q2(Fx - ^) ? (F2 - ^) + w an F(mn2, (4142)?)
with three different values of coincidence numbers X\m2, X2m\ and X\X2.

This theorem, along with Lemma 1 and Theorem 2, leads to the following the?

orem, which provides another construction method of F(/nod)- and /2-optimal
SSDs.

THEOREM 5. Suppose Fi is an F(ni,q^1) with constant coincidence num?
bers Xi and no fully aliased columns, i = 1,... ,4, D3 is an ND(r3#3, n2, #3)
defined on Abelian group A3 = {0,..., q3 ? 1} without identical rows, D4 is an
ND(r4g4, n\, q4) defined on A4 = {0, ..., q4 ? 1} without identical rows, and they
satisfy (i) n\ = n3, n2 = n4; (ii) the first rows of F3 and F4 consist of all zeros;
(iii) there are no fully aliased columns between F3 and Df4 or between F4 and D3.
Then

F =
(2)

?2 - i\ , q\q2 - 1

Fl?A3 D3>D4 ?^4^4

is an F(n\n2, (q\q2)mim2q33r3q3 q?4r4q4) without fully aliased columns and:

(a) if the difference among three values X2m\ + r3m3 + X4r4q4, X\X2 + r3m3 +

r4m4 andX\m2 + X3r3q3 + r4m4 does not exceed one, then F is F(/nod)-optimal;

(b) if q\q2X2m\ + #3^3 + X4r4q\ = q\q2X\X2 + #3^3 + q4r4m4 =
q\q2X\m2 + X3r3q2 + q4r4m4, then F is y}-optimal.
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1318 f. sun, d. k. j. lin and m.-q. liu

The following two examples serve as illustrations of the construction method in
Theorem 5.

Example 4. Let F\ and F3 be two L4(23)'s; F2 be the F(6, 210) obtained by
Liu and Zhang (2000); F4 be the F(6, 35) obtained by Fang, Ge and Liu (2004);
?>3 be an ND(12, 6, 2) without identical rows obtained from an L\2(2n)\ D4 be an
ND(12,4, 3) without identical rows; A3 = GF(2) and A4 = GF(3). Suppose the
first rows of F3 and F4 consist of all zeros. Then based on Theorem 5, X\ = X3 =
a4 = 1, X2 = 4, m\ ? 1713 = 3, m2 = 10, ra4 = 5, #i = q2 = qi = 2, g4 = 3, r3 =
6, r4 = 4 and A^mi + r3m3 + A.4r4^4 = A4A2 + 7^3 + r4m4 = X\m2 + X^r^q^ +
r4m4 = 42. Thus, from (2), we obtain an F(/nod)-optimal F(24, 430236360) with
constant coincidence numbers 42 and no fully aliased columns.

Example 5. Let F\ and F3 be two L4(23)'s; both F2 and F4 be the F(6, 35)
obtained by Fang, Ge and Liu (2004); d3 be an ND(24, 6, 2) without identical
rows obtained from an L24(223) based on A3 = GF(2) and D4 be an ND(6, 4, 3)
without identical rows based on A4 = GF(3). Suppose the first rows of F3 and
F4 consist of all zeros. Then X\ = X2 = X3 = X4 = 1, q\ = ^3 = 2, q2 = q4 =
3, T3 = 12, r4 = 2, mi = m3 = 3, m2 = m4 = 5, which satisfy the condition that

q\q2X2m\ + qyrynz + A.4r4g| = q\q2X\X2 + #3^3 + #4r4ra4 = qiq2X\tn2 +
^3r3^3 + ^4^4m4 = 108. Thus, the design constructed through (2) is a x2-optimal
F(24, 615272330) with constant natural weighted coincidence numbers 108 and no
fully aliased columns.

4. Nonorthogonality of the resulting designs. In the previous section, con?
struction methods for F(/nod)- as we^ as X2-?ptimal SSDs without fully aliased
columns are provided. Full aliasing can be viewed as the extreme case of
nonorthogonality. In this section, we will investigate nonorthogonality, measured
by /nod, of the resulting designs, and show how it is controlled by the source
designs.

theorem 6. Suppose fl = (fu,..., fniiY is a qt-level balanced column
with induced matrix X,-, A[ = {0, ? 1}, / = 1,..., 4, n\ = ?3, n2 = n4. Let

hi = qiif1 - V) ? (f2 - V) + ^ and h2 = ?4(/3 - V) ? (/4 -

(a) fsoD(hi,h2) = /nod(A/3)/nod(/2,/4) + J^/nodC/"1,/3) +
^/nod(/2, /4);

(b) i/^i = q2, qs = q4, then

/nod(/' ?a, f2, f ?^3 /4) < qmhovif1, /3)/nod(/2, /4)

+ min{n2/nod(/1, /3),?2/nod(/2, /4)},
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construction of mixed-level supersaturated designs 1319

where the equality holds if and only if fl is orthogonal to f3 or f2 is orthogonal
tof4;

(c) if q\ = q2, then

/nodC/1 ?Al f2, h2) < si/nodC/1, /3)/nod(/2, f4)

+ min{^/^4/NOD(/1, /3),?i/^3/nod(/2, f4)},

where the equality holds if and only if fl is orthogonal to /3 or f2 is orthogonal
tof4.

Theorem 6 shows that the nonorthogonality measured by /nod of the resulting

designs is well controlled by the source designs. If the source designs have small
values of /nod. then the resulting design will also have small values of /nod- In
particular, we have the following.

corollary 2. Suppose fl = (fu,..., fnii)f is a qi-level balanced column
with induced matrix X/, A[ = {0,..., qi ? 1}, i = 1,..., 4, n\ ? n3, n2 = n4.
Then:

(a) if fl is orthogonal to f3 and f2 is orthogonal to /4, then q2(fl ? ?

(f2 ~ ^) + is orthogonal to q4(f3 - ^) ? (/4 - ^) +
(b) if q\ = q2, q3 = q4 and fl is orthogonal to f3 or f2 is orthogonal to /4,

then fl (Ba\ f2 is orthogonal to f3 ?^3 /4;
(c) if q\ = q2 and fl is orthogonal to f3 or f2 is orthogonal to /4, then

fl ?Ai f2 is orthogonal to q4(f3 - ^) ? (/4 - ^) +

This corollary indicates that the orthogonality between columns of the source
design is maintained in the generated designs.

5. Discussion and concluding remarks. In this paper, we have presented
some construction methods for F(/nod)- and x2-optimal SSDs. A review of the
existing methods for mixed-level SSDs and comparisons with the current methods
are summarized below.

(a) Yamada and Matsui (2002) and Yamada and Lin (2002) proposed two meth?
ods for constructing mixed-level SSDs consisting of only two- and three-level
columns through computer searches. However, their resulting designs have no the?

oretical support and typically are unable to achieve the lower bound of x2-value.

(b) Fang, Lin and Liu (2000, 2003) proposed an FSOA method for constructing
E(/nod)-optimal mixed-level SSDs from saturated orthogonal arrays. Li, Liu and
Zhang (2004) and Ai, Fang and He (2007) extended the FSOA method to construct
X2-optimal SSDs. Koukouvinos and Mantas (2005) constructed some ?(/nod)
optimal mixed-level SSDs by juxtaposing either a saturated two-level orthogonal
array and an E(/nod)-optimal mixed-level SSD, or two E(/nod)-optimal SSDs.
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1320 f. sun, d. k. j. lin and m.-q. liu

Fang et al. (2004a) and Tang et al. (2007) presented some methods for constructing
?(/nod)- and x2-optimal mixed-level SSDs, respectively, from given combinato?
rial designs. There are many constraints on the parameters of saturated orthogonal

arrays and combinatorial designs and the construction of most combinatorial de?
signs are unresolved. Thus, the optimal SSDs obtained by their methods are rather
limited.

(c) Yamada et al. (2006) presented a method for constructing mixed-level SSDs
by juxtaposing two SSDs, each of which is generated by the operation "?" of an
initial matrix and a generating matrix. It can be seen that their operation "?" is in

fact equivalent to the "?^4" in this paper with A = {0,..., q ? 1}, and they only
provided the theoretical justification of the x2-optimality for the SSD with n = 6.

Recently, Liu and Lin (2009) proposed a method to construct x2-optimal mixed
level SSDs from smaller multi-level SSDs and transposed orthogonal arrays based
on Kronecker sums. It can be easily confirmed that the result of Liu and Lin (2009)

is merely a special case of our Theorem 3, by taking F\ as Lqi = (0,..., q\ ? \)f
and D as Lrqi (q"2). Thus, all their designs can be constructed by our Theorem 3.

(d) Using ^-cyclic generators, Chen and Liu (2008a) and Liu and Zhang (2009)
constructed some ?(/nod)- and x2-optimal mixed-level SSDs, respectively. The
^-cyclic generators were obtained via computer searches, when the values of k,
the run size and/or the level sizes become larger, the computer searches tend to be

ineffective and impractical.

(e) Recently, Liu and Cai (2009) proposed a new construction method, called
the substitution method, for E(/nod)-optimal SSDs. It can be seen that all the
E(/nod)-optimal SSDs tabulated in our Tables 6 and 8 are different from those
tabulated in their Appendices.

Note that the newly proposed methods use small equidistant designs and differ?

ence matrices to generate large designs. Many difference matrices can be found in

Hedayat, Slone and Stufken (1999), Wu and Hamada (2000) and from the site http:

//support.sas.com/techsup/technote/ts723.html maintained by Dr. W. F. Kuhfeld of

SAS. Equidistant designs can be found in Ngugen (1996), Tang and Wu (1997),
Liu and Zhang (2000), Lu et al. (2002), Fang, Lin and Liu (2003), Fang, Ge and Liu
(2002a, 2002b, 2004), Lu, Hu and Zheng (2003), Fang et al. (2003, 2004a, 2004b),

Aggarwal and Gupta (2004), Eskridge et al. (2004), Georgiou and Koukouvinos
(2006), Georgiou, Koukouvinos and Mantas (2006), Chen and Liu (2008a), Liu
and Cai (2009) and others. Difference matrices can also be obtained from orthogo?

nal arrays or by taking the Kronecker sums of difference matrices, and equidistant

designs also include saturated orthogonal arrays of strength two.

The appealing feature of our methods is that they can be easily applied and
the resulting designs are ?(/nod)- and/or x2-optimal SSDs without fully aliased
columns. In particular, the nonorthogonality between columns of the resulting de?

signs is well-controlled by the source designs, that is, if the source designs have
little nonorthogonality, the generated design will also have little nonorthogonality.
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construction of mixed-level supersaturated designs 1321

From these proposed methods, many optimal SSDs can be constructed in addition
to those tabulated in the Appendix.

In regard to the statistical data analysis for mixed-level SSDs, it should be noted

that analyzing the data collected by such SSDs is a very important but complicated

task which has attracted much recent attention. See, for example, Zhang, Zhang
and Liu (2007), Phoa, Pan and Xu (2009) and Li, Zhao and Zhang (2010). When
there are many more factors than the number of permitted runs due to expense

(e.g., money or time), the nonorthogonality among factors may be very severe
and may prevent the few active factors to be identified correctly by any existing

method. Therefore, the data analysis for SSDs in general remains an important and

challenging topic for further research. Some recent study on the analysis of "high

dimension and low-sample size" in genetic studies (e.g., studying 6,000 genes with

only 37 observations) may be relevant.

Proof of Theorem 1. (a)(i) If fl and f3 are fully aliased, that is, fl can
be obtained by permutating the levels of /3, then there must exist a permutation

matrix Q of order q that satisfies Xi = X3Q, thus X\X[ = X3QQfXf3 = X3Xfy
On the other hand, let V\ and V3 be the vector spaces spanned by the columns

of X\ and X3, respectively. If X\X[ = X3Xf3, then V\ = V3, and for any column
x? of X\, we have

x? = k\x3 H-h kqx3 where xl3 is the ith column of X3, i = 1,..., q.

Since any two columns in an induced matrix share no element 1 at any position
and each column has n\/q ones and n\ ? n\/q zeros, there must exist only one
ki ^ 0, that is, x? is identical to a column of X3. Then there exists a permutation
matrix Q of order q satisfying X\ = X3Q, thus fl can be obtained by permutating
the levels of /3, that is, fl and f3 are fully aliased.

(ii) Note that the induced matrix of fl ?A f2 is [(X2Pfu)\ ..., (X2PfnilYY
and Pfil = Y?t=\ x}tPt-u then

APPENDIX A: PROOFS

t=\

= (In, ? X2)(XX ? Iq)P = (Xi ? X2)P,

where In is the identity matrix of order n.
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(iii) The induced matrices of fl @A f2 and f3 ?A f4 are (X\ ? X2)P and
(X3 ? X4)P, respectively. If fl ?a f2 and f3 ?A f4 are fully aliased, then there
exists a permutation matrix Q of order q such that

(Xi ? X2)P = (X3 ? X4)P?, that is, ?4x2P,_i = ^4^4^-1 Qt=l t=l
for s = 1,..., hi. For any s and /, there is only one nonzero element of xlst for
t = 1,..., q that equals 1. Thus, X2Ptx-\ = X4Pt3-\Q, and therefore f2 is fully
aliased with f4. Similarly since f2 ?A f1 and f4 ?A /3 are also fully aliased, it
follows that fl is fully aliased with f3.

(b)(i) It can be obtained easily from the definition of an induced matrix.

(ii) From (a)(i), we only need to prove that columns q2(fl ? ^j^) ? (f2 ?
gizl) + mr=? and _ ^1) 0 (/4 _ 34-1} + m^l are fully aliased if and
only if X\X'X ? X3X3 and X2X'2 = X4XfA. From (b)(i), the induced matrices of
these two columns are X\ ? X2 and X3 (8) X4, respectively, thus from (a)(i), they
are fully aliased if and only if (Xx ? X2)(Xi ? X2)' = (X3 ? X4)(X3 ? X4)',
that is, XiXi ? X2X^ = X3X3 ? X4X^, which means that X\X[= 0X3X3 and
X2Xf2 = l/aX4X4 for some a^O. Since the elements in X;X- are all ones and
zeros for i = 1,..., 4, then a = 1, that is, X\X[ = X3X3 and X2Xf2 = X4X\.

(iii) The induced matrices of columns q2(fl - ? (f2 - &=?) + and
/3 ?^ f4 are Xi ? X2 and [(X4Pfl3)\ ..., (X4P/ 3)']', respectively. If these two

columns are fully aliased, then VijX2Xf2 = X4Pfi3Pjr.3Xf4, where Vij is the (/, j)th

entry of X\X[, /, j = 1,..., n\. Note that Vfj can be zero, and hence VijX2X2 can

be a zero matrix which contradicts the fact that X4Pfi3Pj.3Xf4 cannot be a zero
matrix in any case. ?

Proof of Theorem 2. (a) Consider the ith and jth rows of F ?A d^
(fh ?Adi2Y and (fjx ?AdhY, where / = (ii - l)c + /2, 7 = (71 - l)c + j2, hji =
1,..., n, /2, 72 = 1,..., c, and / 7^ 7, and d& are the kth rows of F and D\ re?
spectively. Then the coincidence number between (fix ?A d[2Y and (/71 ?^4 d^/
equals the number of zeros in (fix ? fjx) (BA (d[2 ? dj2).

(i) Suppose i\ = 71, /2 7^ 72, then = /71 and di2 / d/2. From the definition
of difference matrix, each element in A occurs r times in d[2 ? dj2. Therefore,
(fh ~ fj\) ?A (di2 - dj2) = 0m ?A (di2 - dh) and there are mr zeros in 0m ?^4
(di2 ? dj2), where 0m denotes the m x 1 column vector with all elements zero, that

is, the coincidence number between (fix ?A di2Y and (fjx (&A dj2Y is mr.
(ii) If i\ / 71, i2 / 72, similar to (i), it can also be easily seen that there are

mr zeros in (fix ? fjx) ?^ (di2 ? dj2), that is, the coincidence number between
(fh ?A di2y and (fh ?A dh)f is mr.

(iii) If i\ ^ 71,12 = 72, that is, ^ fjl9 dh = dj2, then (fh - fh) ?A (dh -
dj2) = (fh ~ fi\) ?A Orq, and there are Xrq zeros in (fh - fh) ?A 0rq, that is,
the coincidence number between (fix ?A di2)f and (fjx ?A dj2Y is Xrq.
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construction of mixed-level supersaturated designs 1323

(b) F ?a d' can be obtained from d' @a f through row and column permu?
tations. Thus, if d' ?a f has no fully aliased columns, neither does f ?a f>
Let dl ?^4 fl and d2 ?a f2 be two different columns of d' ?a F, where
dl = (du,..., dCi)' and /' = (fu,..., fni)' for i = 1 and 2 are columns of d' and
F, respectively. Since d is a normalized difference matrix, du = 0 for i = 1 and 2.

Let Xi and X2 be the induced matrices of fl and /2, respectively. Then the in?
duced matrices of dl (&a fl and d2 ?^4 f2 are

/ *i \

\XiPdcJ

Suppose dx @a fl and d2 ?a f2 are fully aliased. Then from Theorem 1,

(3) Xl Pdu P'djXX[ = X2Pdi2P'dj2X'2, i,j = l,...,c.
Noting that Pdu = Pdn = Iq, we can obtain the following equations by taking
i = 1 in (3):

(4) X1X[ = X2X'2,

(5) XlPdjiX[=X2Pdj2X'2, 7=2,...,c.
Since F has no fully aliased columns, from equation (4), we know that fl and

f2 must be the same column of F, thus X\ = X2, and Xi Pfd X[=X\ Pfdj2X[ for
j ? 2,..., c. Also, since X\ is a column full rank matrix, we have P'd.x ? Pj , and
thus dji = dj2, for 7 = 1,..., c, that is, dl = d2. So J1 and d2 must be the same
row of d since d has no identical rows. Therefore, dl ?^4 Z1 and d2 ?^4 /2 are
the same column of d' ?a F, which contradicts the fact that they are two different

columns of d1 ?a F. Hence, df ?a F as well as F ?^4 D' have no fully aliased
columns. ?

Proof of Theorem 3. We only prove that there are no fully aliased
columns between f\ @a\ f>f and 0ni ? F2. (The others can be proved easily.)
Suppose fl ffiv41 dl and 0ni ? f2 are columns of f\ ?a{ df and 0n{ ? F2,
respectively, where f2 and d1 = (0, d2i,..., dni\)' are columns of Fi,
F2 and Z)', respectively. Let X and F be the induced matrices of fl and
/2, respectively. Then the induced matrices of dl (Ba\ fl and f2 ? 0Wl are

[X', (XP</21)',..., (XP^)'] and Y ? lWl, respectively. From the definition of an
induced matrix, it is easy to see that XXf ^ yoUi Vn , where yo is the (1, l)th en?

try of YY' and \nx denotes the n\ x 1 vector with all elements unity. Thus, from

Theorem i, dl ?a\ fl and f2 ? 0Wl are not fully aliased. Therefore, f1 ?^
and 0Wl ? f2 are not fully aliased. ?

The following lemma will be used in the proof of Theorem 6.

/ X2 \
X2Pd22

and

X2Pd?c2

respectively.
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lemma 3 [Fang, Lin and Liu (2003)]. Suppose fi is the jth column of an
F(n, q\" - qm) with induced matrix Xj, j = 1,..., m. Then? ? n2

fr0D(f\fJ)=tr(XfiXjX'jXi)-.

Proof of Theorem 6. (a) From Theorem 1 and Lemma 3, the induced ma?
trices of h\ and h2 are X\ ? X2 and X3 ? X4, respectively. Then we have

2 2

faoD(hx,h2) = tr[(XiX3X^Xi) ? (X'2X4X'4X2)] - f^f?n,=i qi
,2 ?2

= tr(XiX3X^Xi)tr(X^X4X;X2)

= /nod(/\/3)/nod(/2,/4)2 2
+ -^-/nod(/\ f3) + ^-/nod(/2, /4).<72<?4 #1<?3

(b) The induced matrices of fl ?^ f2 and f3 ?a3 f4 are (X\ ? X2)P and
(X3 ? X4)?, respectively, where P = (P^,..., Pqx_x)f, Q = (Qf0,..., Q'^)',
Pi and Qj are permutation matrices defined by (0, ...,q\ ? 1)P/ = / +a\
(0, ...,q\ - 1) and (0, ...,#3 - l)?'; = j (0, ...,93 - 1), respectively,
1= 0,..., qx - 1, j =0,..., 93-L Let T = P'(X[X3 ?Xr2X4)Q-n^\qx\'qy

Then from Lemma 3, /nod(/1 ?.Ai /2, /3 ??43 f4) equals the sum of squares of

the elements of T. Let W = (wy) = Z;x3, 5 = (fcy) = X^X4 - n2/(qiq3)lqxlqy

and note that X)JLi Efii ^7 = "i> Ef=i Efii = ?- Then
43 4i

7=11=1

and the (s,t)th entry of T can be expressed as EyLi Efii wijbSitj, where
(5-1,..., sqi) and (^i,..., tqf) are some permutations of (1,..., q\) and (1,..., q3),
respectively. Then

(43 q\ \2 / 43 q\ \ / q3 q\ \

y = l i = l / \j=li = l I \j=\i = l /
and thus

(43 41 \ / 43 41 \

7=i;=i / \7=i(=1 /

= <7l<?3 /nod(/\/3) + -^
?193.

/nod(/2> /4),
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construction of mixed-level supersaturated designs 1325

where the equality holds if and only if there exist c\ and c2 with \c\\ + \c2\ >

0 such that c\Wij = c2bSitj for / = 1,..., q\ and j = 1,..., q?>. This means that

c\ EjLi Efli u;l7 = c2 Ef=i Efli = ?> and so ci = 0, c2 ^ 0 and bu = 0
for / = 1,..., q\ and 7 = 1,..., #3. Thus, /2 is orthogonal to f4.

On the other hand, if f2 is orthogonal to /4, /nod(/2, /4) = 0 and

O^/nodC/1?^ Z2,/3 ?^3 /4)

<<7l<?3 /nod(/\/3) +
<7l#3

/nod(/2,/4) = 0,

then the equality holds.
Similarly, we can obtain that

/nOdC/1 ?^ f\ f ?A, f4) = fr0D(f2 ?AX f\ f4 ?A, f3)

< qiq* /nod(/2, f4) +
<?2<74

/nod(/\ /3),

and the equality holds if and only if fl is orthogonal to f3. Hence, we have the
assertion.

(c) The induced matrices of fl ?^ f2 and h2 are (X\ <g> X2)P and Z3 ?

X4, respectively. Let = P'(X;X3 ? Z^X4) - S^U'0 = ^ =
X2^4 - 1;4 and W = (u>0-) = X[X3, and note that Y%Li Wj = nx/q3, j =

l,...,q3. Then K = (Au ..., Aq3), where Ay = T,jLiwij Pj-iG- Note that
/nod(/! ?A\ /2> n2) is equal to the sum of squares of the elements of K, the
(*,f)th entry of Aj is Eti ?>ij8*,t and CEHLiWjg*)2 < Eti 8$,

where (5*1,..., sqx) is a permutation of (1,..., q\). Then similar to the proof in
(b), we get

#3 44 q\ I q\ q\ \
/nodc/1 ?i,/2,A2)<EEEE 4 ?j=h=h=lV=l Jfc=l /

q3 q\ q4 qi

=?i LESSEE**/
j = l i = \ t=lk=\

= 91 /nod(/1,/3) + qm/nod(/2, /4),

where the equality holds if and only if f2 is orthogonal to /4, and

fNOD(fl?Ai f2,h2)<qi /nod(/2,r) +
q\q4J

where the equality holds if and only if fl is orthogonal to f3. Thus, we complete
the proof of (c). ?
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APPENDIX B: SOME SELECTED OPTIMAL SUPERSATURATED DESIGNS

Table 5
Equidistant designs used in Tables 6-9

n m q Source design

4 3 2 Orthogonal array
8 7 2 Orthogonal array
12 11 2 Orthogonal array
16 15 2 Orthogonal array
16 5 4 Orthogonal array
20 19 2 Orthogonal array
24 23 2 Orthogonal array
25 6 5 Orthogonal array
6 10 2 Liu and Zhang (2000)
6 5 3 Fang, Ge and Liu (2004)

6 5k (k = 2, 3) 3 Georgiou and Koukouvinos (2006)
8 7k(k = 2,...,5) 2 Liu and Zhang (2000)
8 7k(k = l,2) 4 Fang, Ge and Liu (2002a)

8 Ik (k = 3,..., 6) 4 Georgiou and Koukouvinos (2006)
9 4k (k = I,... ,7) 3 Fang, Ge and Liu (2004)
9 4k (k = 8,10, 12) 3 Georgiou and Koukouvinos (2006)
10 18*(fc=l,2,3) 2 Liu and Zhang (2000)

10 9 5 Fang, Ge and Liu (2002b)
10 9k (k = 2, 3,4) 5 Georgiou and Koukouvinos (2006)

12 1 Ik (k = 2,..., 12) 2 Liu and Zhang (2000)
12 11 3 Lu, Hu and Zheng (2003)

12 1 Ik {k = 2,..., 5) 3 Georgiou and Koukouvinos (2006)
12 11 6 Lu, Hu and Zheng (2003)

12 1 lk (k = 2, 3) 6 Georgiou and Koukouvinos (2006)
14 13fc(* = l,2) 7 Fang et al. (2003)

15 28 3 Georgiou and Koukouvinos (2006)
15 7k (k = 1,..., 13) 5 Fang, Ge and Liu (2004)
16 15k (k = 2,..., 6) 2 Liu and Zhang (2000)
16 15k (k = 7, 8,9) 2 Eskridge et al. (2004)
16 5k(k = 2,...,6) 4 Fang et al. (2003)
16 5k (k = 7,..., 16) 4 Georgiou, Koukouvinos and Mantas (2006)
18 34fc(*=l,2,3) 2 Liu and Zhang (2000)
18 17* (A: = 1,2) 3 Fang et al. (2003)

18 17 6 Lu, Hu and Zheng (2003)
18 34 6 Georgiou and Koukouvinos (2006)

20 19fc(fc = 2,3) 2 Liu and Zhang (2000)
20 19 4 Lu et al. (2002)
20 19 5 Lu et al. (2002)

22 42 2 Liu and Zhang (2000)
24 46 2 Liu and Zhang (2000)

24 23 4 Lu et al. (2002)
24 23 6 Lu, Hu and Zheng (2003)

25 6k {k = 2,..., 25) 5 Georgiou, Koukouvinos and Mantas (2006)
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Table 6
Some selected E (/nod)-optimal SSDs constructed by Theorem 3

?1 m\ q\ /i2 m2 qi r Final resulting SSD1^ X

4 3 2 6 5* 3 4* F(24,2m35*) 13*, *= 1,2, 3
4 3 2 8 7* 4 6* F(32,236*47*) 19^, k = 1,..., 6
4 3 2 9 4* 3 3* F(36, 218*34*) 10?, ? = 2r, f = 1..., 6

6 5 3 6 10 2 3 F(36, 210 345) 19
4 3 2 10 9* 5 8* F(40,24Sk59h) 25k, k = 1,..., 4

4 3 2 12 11* 3 8* F(48 , 248*31U) 27*, k = 1,..., 5
6 5 3 8 Ik 2 2k F(48,27*330*) 13*, * = 2,..., 5

6 10 2 8 7* 4 3* F(48, 260*47*) 31*, * = 2,4,6
4 3 2 12 11* 6 10* F(48,260*6m) 31*, ?=1,2,3

6 5 3 8 7* 4 3* F(48,345*47*) 16*, * = 1,..., 6
6 10 3 8 7* 2 * F(48,27*330*) 13*, * = 3,4,5

6 10 3 8 14* 4 3* F(48,390k4Uk) 32*, *= 1,2,3
6 10 2 9 16 3 6 F(54,2120316) 64

4 3 2 14 13* 7 12* F(56,272kll3k) 37*, *= 1,2
4 3 2 15 28 3 20 F(60, 2120328 ) 68
6 5 3 10 18* 2 5* F(60,218*3m) 33*, * = 2,3

4 3 2 15 7* 5 6* F(60,236k5lk) 19*, * = 2,..., 13
6 10 2 10 9* 5 4* F(60,280*59*) 41*, * = 2,3,4
6 5 3 10 9* 5 4* F(60,360k59k) 21*, * = 1,..., 4
10 9 5 6 5* 3 * F(60,35k545k) 10*, * = 2,3

6 10 3 10 18 5 4 F(60,3120518) 42
4 3 2 16 5* 4 4* F(64,224k45k) 13*, * = 2,..., 16

4 3 2 18 17* 3 12* F(72,272*317*) 41*, ?=1,2
6 10 2 12 11* 3 4* F(72,280*3m) 43*, * = 2,..., 5
4 3 2 18 34 6 30 F(72 , 2180634) 94
6 10 2 12 22 6 10 F(72,2200622) 102

9 4 3 8 7* 4 6* F(72,312k4lk) 25*, * = 1,..., 6
6 5 3 12 11* 6 5* F(72,375*6n*) 26*, * = 2,3

10 18 2 6 5* 3 2* F(80,2m35*) 37*, * = 2,3
10 18 2 8 7* 4 3* F(80,2108*47*) 55*, * = 2,4,6

4 3 2 20 19 5 16 F(80, 296519) 51
10 9 5 8 14* 4 3* F(80,414*5135*) 29*, *= 1,2,3

6 10 2 14 26 7 12 F(84,2240726) 122
6 5 3 14 26 7 12 F(84, 3180726) 62

6 10 2 15 7* 5 3* F(90,260k5lk) 31*, * = 2t, t = 2,..., 6
6 5 3 15 7* 5 3* F(90,345k57k) 16*, * = 2..., 13
9 4 3 10 9* 5 8* F(90,396*59*) 33*, * = 1,..., 4
6 5 3 16 15* 2 4* F(96,215*360*) 27*, * = 2,..., 9

4 3 2 24 23 4 18 F(96,2108423) 59
6 10 2 16 5* 4 2* F(96,240k45k) 21*, * = 4,..., 16

4 3 2 24 23 6 20 F(96,2120623 ) 63
6 5 3 16 5* 4 2* F(96,330k45k) 11*, * = 3,..., 16
4 3 2 25 6* 5 5* F(100,230*56*) 16*, * = 2t,t = 2,..., 12

tF^^P'V2).
X is the constant coincidence number of the final resulting SSD.
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Table 7
Some selected y} -optimal SSDs constructed by Theorem 3

n, m, qi ?2 ?l 92 r Final resulting SSDf _
, - 7 6 5k 3 6k F(24,236t35fc) 39k, k = 1,2,3
1 3 2 8 7k 4 12k F(32>2W) 76k, fc = 1,.. ? ,6

"329 16k 3 18k F(36,2?*3??) 120k, k= 1,2,3
6 jo 2 6 10 3 6 F(36,2>*>3>?) 126

? s 3 6 10 2 2 F(36,210330) 38
\ 3 2 10 9k 5 20k F<40.2?*5*) 125k, k = 1,.. ?, 4
\ 33 \ n ?* 3 12k F(48,2?3?') 81k, k = 1,.. -, 5

8 14 2 6 10 3 6 F<48.2??3?>) 174
J " j 12 Hk 6 30k F(48,2^61U) ?6*.* = 1.2,3

t * \ ? 7k 4 6k F(48,2l20^) 124k, k = 1,..., 6
t " 3 8 7k 4 4k F<48.3?*4?) 64k, k = 1,.. -, 6

t ,n 3 8 7k 4 2k F(48,360*4?) 64k, k = 2,..., 6
I 5 42 4 8 F(48,3^4?) 384

$ 7 2 6 5k 3 6k F<48,2?*3*) 87*.* = 1.2.3
5 7 4 6 5k 3 k F(48.4?3?) 31k,k = 2,3

! 3 2 14 13 7 42 F(56,2^7'3) 2594 3 2 5 28 3 30 F(60,W) 2044 3 2 5 14 5 30 F(60.2??5") 190
1 ,0 2 0 9fc 5 10k F(60.2?*5*) 205k, k = 1.....4

10 8 2 6 10 3 6 F(60,2^3'?) 222
" 3 2 16 5k 4 8k F(64.2?4*) 52k, k = 2,..., 16

3 j 2 8 7k 4 6k F(64,2^47*) 172k, k = 1,..., 6
I 3 j 18 17k 3 18k FC72.2??3?*) 123k, k= 1,2

1 2 9 8k 3 9k FC72.2^3?) 132k, k = 2,4,6
l l 3 g 7fe 4 4k F(72,3*>*4?) 100k, k = 1,..., 6

oi?, 8 7k 4 2k F(72,396*47*) 100k, k = 2.6
96 " 3 !2 11k 6 10k FC72.W*) 156k, k= 1,2,3

l 7 j 0 9k 5 20k F(80,2?*5*) 285k, k = 1,... .4
,0 ig 2 8 7k 4 6k F(80.2??4?) 220k, k = 1,.., 6

* 'I 3 u 13k 7 14k F(84.3*?7>?) 217*.* = 1.2
* 3 5 7k 5 5fc F(90,3?2?) 80k, k = 2,.... 116 io 3 6 30 4 8 F(96,3^4?) 264

10 g 2 0 9k 5 10k F(100.2**2*) 365k, k = 1,... .4
" 3 2 11k 2 4k FdOB.3^2?') 58k, k = 1,..., 12

,90 ig 2 2 11* 3 6k F(120.2"?3l") 225k, k = 1,..,5
8 4 4 26 7 14 F(112,43<*4*>) 406

8 14 2 16 5fc 4 4fc F(128,2112^) 116k, k = 2,..., 16
4 3 15 7k 5 10k F(135,3120*57*) 125k, k = 1,..., 5

tF(Mln2,^m'91^).
<w is the constant natural weighted coincidence number of the final resulting SSD.
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Table 8
Some selected E(/nod)-optimal SSDs constructed by Theorem 5

n\ m\ 41 nl m2 42 m3 a3 m4 44 r3 r4 Final resulting SSD^ X

4326 10 2325 3 64 F(24, 236360430) 42
4326 10 3325 3 8 2 F(24, 248330630) 36
4326 15 3325 3 12 3 F(24, 272345645) 54
4328 7* 232 7 4 4k 2k F(32,224k417k) 29k, k = 1,..., 5
4328 21 232 14 4 12 3 F(32,2724231) 87
4328 28 23274 16 8 F(32, 2964308) 116
4328 21 432 7 4 18 2 F(32,2108456863) 71
6 10 2 6 10 2 10 2 5 3 12 12 F(36,224031804100) 196
4329 8* 3324 3 6k 4k F(36,236k34Sk624k) 36k, k = 1,..., 6
6 10 2 6 5* 3 10 2 5 3 8* 3k F(36,2mk345k650k) 99?, ? = 1,2,3
6 10 2 6 10 3 10 3 10 2 8 6 F(36,212032406100) 148
6536 10 253 10 2 3 8 F(36,2160345650) 99
6 5 3 6 5k 3 10 2 5 3 2k 2k F(36,240k330k925k) 31?, ? = 2,3
6536 15 3 10 3 10 2 3 6 F(36,2120390975) 93
6 10 2872 10 3724 18 F(48,22523120470) 178
6538 14 253 14 2 4 12 F(48,2336360670) 194
6 5 3 8 21 2 10 3 14 2 3 18 F(48,25043906105) 291
6538 28 253 21 2 8 16 F(48,267231206140) 388
6538 7? 453 7 2 3?4? F(48, 256/c345k\235k) 44k, k = 1,..., 6
6 10 2 8 Ik 2 10 2 14 4 8? 3? F(48,216(W:42m) 134?, ? = 1,..., 5
6 5 3 8 7? 2 10 2 7 4 2? 4? F(48,240*4im635/:) 51?, ? = 2,..., 5
6 5? 3 8 21 2 10 2 7? 4 6? 12 F(48,2mk4336k6l05k) 153?, ? = 1,2,3
6 10 2 8 7? 2 5 3 7 4 8? 6? F(48,3im42m) 94?, ? = 1,..., 5
6538 14 2537448 F(48,3604224670) 82
6 5? 3 8 21 2 5? 3 7? 4 6 12 F(48, 390*4336?:61()5/:) 123?, ? = 1,2,3
6 10 3983 10 2 8 3 6 8 F(54,21203192980) 128
10 18 5 6 10 2 18 2 5 3 6 32 F(60,2216348010180) 276
6 10 3 10 9553 18 2 8 4 F(60,214431201590) 114
6 10 3 10 9553 9 5 8 2 F(60,31205901590) 60
8 7 2 8 7? 2 7 2 7 4 12? 4? F(64, 2168*416U) 121?, ? = 1,..., 5
8 7? 2 8 14 2 14 2 7 4 12? 8? F(64,2336*4322*) 242?, ? = 1,..., 5
8 7 2 8 7? 4 21 4 7 2 2? 4? F(64,256/c4168*849/c) 73?, ? = 1,..., 6
8 7? 2 8 14 4 21 4 14 2 4? 4? F(64,2im4336*898*) 146?, ? = 1,..., 5
8 7? 2 8 21 4 21 2 7 4 18? 4? F(64,2756*4im8147/:) 415?, ? = 1,..., 5
8 7? 2 9 16 3 7? 4 16 3 12 4? F(72,3l92*4336?6112?) i60?, ? = 1,...,5
10 9? 5 8 14 2 9? 5 7? 4 2 16 F(80,4448*590/40126/:) 136?, ? = 1,..., 4
10 9? 5 8 21 2 9? 5 14? 4 3 12 F(80,4672*5135*10189*) 204?, ?=1,2,3
10 9? 5 8 14 4 9? 5 7? 2 3 16 F(80,22m5135*20126/:) 141?, ? = 1,..., 4

^(?1*2. {qiqir^qT^C^ ?1 =?3. "2 =n4
X is the constant coincidence number of the final resulting SSD.
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Table 9
Some selected y} -optimal SSDs constructed by Theorem 5

n\ m\ q\ nt2 q2 q$ m4 q4 r$ r4 Final resulting SSD^ oo

4326533253 12 2 F(24, 272330615) 108
4328 7* 23274 8* 2k F(32, 248*4m) 116*, k = 1,..., 5
9 8* 3 4 3 2 8* 3 3 2 4 18* F(36,2108*396*624/:) 216*, * = 1,..., 6
6 5* 3 6 10 3 10 2 10 3 18* 6* F(36, 2360?:3180?:9m) 558*, k= 1,2,3
6 10 2 8 7 2 10 2 14 4 16 3 F(48, 23204238) 536
653 872 10 2 14 46 3 F(48, 21204168635) 306

65387253 14 24 18 F(48, 2504360635) 582
6 5 3 8 7* 2 5 3 14* 4 4* 3 F(48,360k4mk635k) 246*, * = 1, 2,3
6 5 3 8 14 2 10 2 7 4 12 12 F(48,22404336670) 612
6538 14 253748 12 F(48,31204336670) 492
6 5 3 8 21 2 10 2 42 4 18 3 F(48,236045046105 ) 918
653 8 28 2 10 3 42 4 8 4 F(48,324046726140) 984
653 874 10 274 18 4 F(48,236041121235) 484
653 8745 3 14 2 12 12 F(48,233631801235) 528

6538745374 12 4 F(48,318041121235) 304
6 5 3 8 14 4 10 3 21 2 12 16 F(48,26723360 1 270) 1056
6 5 3 8 7* 4 10 3 7 4 6* 4* F(48, 3180A:4112*1235/:) 304*, * = 1,..., 6
6 5 3 8 21 4 10 3 7 4 18 12 F(48,3540433612105) 912
6 10 2 9 4 3 10 2 4 3 18 12 F(54,23603144640) 528
10 9* 5 6 5 3 9* 5 5* 3 3 20 F(60,3300*5135* 1545*) 450*, * = 1,2,3
872872 14 274 12 4 F(64,23364161) 484
8728 14 2 21 274 16 8 F(64,26724322) 968
8 7 2 8 21 2 28 2 7 4 18 12 F(64,210084483) 1452
8 7 2 8 7* 4 7* 4 7* 2 12 16 F(64,22m4336*849*) 584*, * = 1,..., 5
8 7 2 8 21 4 21 4 28 2 12 12 F(64,2672410088147) 1752
872983 21 283 18 8 F(72,27563192656) 984
8 7 2 9 8* 3 21* 4 16 3 3 4* F(72,3l92*4252*656*) 480*, *= 1,2

8749437283 18 12 F(72,225232881228) 552
8 7 4 9 4* 3 7* 4 8* 3 3 12 F(72,3288*484*1228*) 384*, * = 1,..., 6
9 8* 3 8 7 2 8* 3 21 2 8 18* F(72,2756/c3im656?:) 984*, * = 1,..., 6
9 8* 3 8 7 2 8* 3 21 4 8 3* F(72,3l92*4252*656*) 480*, * = 1,..., 6
9 8* 3 8 7 4 16 3 21 2 12* 12* F(72,2504*35m1256*) 1104*, * = 1,..., 4
9 8* 3 8 7 4 16 3 14 4 12* 3* F(72, 35m4168*1256/:) 768*, * = 1,..., 4
10 9 5 8 7* 2 18 2 7* 4 10* 20 F(80,2360*4560*1063/:) 950*, * = 1,..., 5
8 14 2 10 9* 5 28 2 9* 5 12* 2 F(80, 26m590/:10126*) 360*, * = 1,... ,4
10 9* 5 8 7 4 9* 5 28 2 6 20* F(80,2lim52m2063/:) 1410*, * = 1,... ,5
8 7* 2 10 9 5 7* 4 9 5 20 2* F(80,4560/c5m1063*) 680*, * = 1,..., 5

1 F(nin2, {q^r^qT^C^ ?1 = ?3. "2 = "4
co is the constant natural weighted coincidence number of the final resulting SSD.
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